"ICTR Cloud Efforts" developing "canonical" SIGINT analytics, finding hard targets and exploratory data analysis at scale

Data Mining Research – ICTR, GCHQ

Dr

Building a SIGINT toolbox for BIG DATA

- Cloud analytics for SIGINT canonical operations
 - Aggregation building Geo-Time profiles for Internet Presence
 - All pairs association alternate identifiers and Geo Associates
 - Componentisation identify interesting small or large groups
- Target discovery at population scale
 - target discovery discover unknown targets
 - known target communications behaviour modus operandi (MO)
 - population scale bulk unselected events all events for country or world
- Exploratory Data Analysis of Internet / Cyber Events

GCHQ Cloud Analytic Development

www.dilbert.com/strips/comic/2009-11-18/

In last few years Data Mining Research at GCHQ have:

- developed new population scale analytics for multi-petabyte cluster
- evaluated cloud for data marting, bulk association, graph analytics
- delivered operational benefit population scale target discovery

Geo-Summaries for all Internet presence

- Building Geo-Time profiles for <u>every</u> Internet identifier we see
- Discovering targets using Modus Operandi
- Summarisation of "Geo Pattern of Life" for every Internet identifier
 - Summarises how often each identifier seen in every country per week
 - Massively reduces data volumes (<u>trillions</u> of events to <u>billions</u> of profiles)

Email=		Perfect for MapReduce
Seen in: PK 17 times, L	JK 2 times	
Week commencing	Seen	IP-Geo for all Internet presence
29/06/2009	UK,1	
06/07/2009	UK,1	Note scale of resulting profiles
12/10/2009	PK,9	
19/10/2009	PK,8	

Geo-profiling over all presence events

- Perfect for MapReduce
 - counting the number of occurrences in a large collection of records
 - "MapReduce: A Flexible Data Processing Tool" Dean and Ghemawat Comms of the ACM January 2010 53(1) pages 72-77
- The Geo-Time summaries for all target identifiers can be used to answer a number of questions:
 - Where has this target identifier been?
 - Which target identifiers match the following country travel pattern?
 - Do anomalous Geo sightings indicate coordinated activity?
- When combined with domain knowledge, can be extremely powerful if aggregated over all the data

EVERY ASSOC & BotGraph: bulk pairwise associations and graph componentization

NEXT GENERATION

Large-scale community detection toolbox

- All pairwise correlation/association build your graph
 - EVERY ASSOC for TDI alternate identifier scoring
 - BotGraph for webmail spam Zhao et al Botgraph [NSDI 09]
 - PROBABILITY CLOUD for handset Geo-Association scoring
- Graph Componentisation
 - GCHQ MapReduce or Bagel implementation
 - Open source MapReduce implementations (CMU Pegasus)
- Analysis pattern to identify sub-sets for deeper analysis
 - Simple approach to make sense of huge datasets
 - Detect communities of potential interest from massive datasets
 - Rarely sufficient but essential first step in data volume reduction

Large networks are dominated by Giant Connected Component: this can help you

Leskovec, Lang, Dasgupta and Mahoney Community Structure in large networks: Natural cluster sizes and the absence of large well-defined clusters arXiv:0810.1355 (2008)

- Loosely connected periphery
- Relatively small number of disconnected small components

Target Discovery at Population Scale

- We are describing a target discovery technique based on known target communications behaviour applied to population scale bulk unselected events
- target discovery discover unknown targets
- known target communications behaviour modus operandi (MO)
- population scale all the events we have for a country
- unselected events not seeded on targets

Caveat Emptor

- Method has shown promise to discover phone groups of interest undiscoverable by traditional analysis.
- "Find adversaries through their behaviour"
- Initial identification of candidates <u>is</u> pure target discovery
 - not seeded on targets
 - search for behaviour in massive events
- <u>BUT</u> it can only be used to effect if it is tied in with analyst knowledge of other patterns of behaviour, possibly geo-related.

Critical Success Factors

- Technical expertise in data mining (ICTR)
- Good understanding of target MO and ability to follow up new leads which are generated (Ops CT Analysts)
- Supporting IT infrastructure (SILVER LINING)
- Bulk access to relevant data sets (SILVER LINING)
 - ICTR lacks bulk access to CULT WEAVE had snapshot in 2007
 - There were promising research lines: see SD conference 2007

Operational Data Mining - Key message

- A combination of technical data mining experts, SIGINT developers, Operations analysts, appropriate data access and suitable IT is needed to make target discovery happen
- In our experience to date, it's not about tool development but the development of new (and fragile) data mining techniques by a critical mass of suitably skilled people!
- There are a set of cloud analytics that should form part of a toolbox but even then their successful application is likely to be as a result of collaboration with analysts

KARMA POLICE – correlation between websites and internet IDs

- Internet ID IP Web address:
 correlation scored on statistics of IP
 - KARMA POLICE QFD from ICTR
 - EVERY POLICE QFD on cloud
- Internet ID-website correlations form a weighted bi-partite graph
 - Links are weighted by KARMA
 POLICE correlation scores
 - Example graph showing correlations between Internet IDs and websites

AWKWARD TURTLE - Cloud QFD

- What is a recommender system?
 - Netflix subscribers who like film X also like film Y
 - Amazon customers who like book X also like book Y
 - GCHQ Terrorists who like website X also like website Y
- MapReduce vector of TDI scores for every website
 - Vector dot product "cosine similarity" measure
 - Maximum degree TDI cut-off
 - Target activity is being used as similarity measure
- Website-website correlations found previously unknown file hosting

Recommender Systems

- We have currently only used very simple techniques
- Body of active research
 - Netflix prize stimulated ©
- Interested in seeing more statistical inference and largescale modelling
 - Potential for long term research
- Behavioural targeting
 - Cf Google and Yahoo ad serving to subscriber profile

Query term graph

- Given a search term, which other search terms are related?
- Build Query term graph (MapReduce):
 - Nodes are queries
 - Directed edges between nodes if a machine searches for one term then the other within 5 minutes
 - Edge weighted according to frequency of search pattern
- Boldi, Bonchi, Castillo, Donato, Gionis and Vigna The query-flow graph: Model and applications CIKM 08
- Gionis Efficient Tools for Mining Large Graphs MLG 10

Ranking in Query Term graph - PageRank

 Small component from full query term graph

 All terms to do with different types of antiques

Red nodes are top 5
 PageRank scores

Personalised PageRank (PPR)

 Red node is seed node – Victorian Card Tables

Yellow nodes are top 5
 Personalised
 PageRank scores

 Nodes with high PR score also score highly with PPR

Normalised PageRank

- Want to find nodes with high Personalised PageRank score, q, compared to its PageRank score, p
- p and q are both (stationary) probability distributions on the same set so KL-divergence comes to mind

$$KL(\mathbf{q}||\mathbf{p}) = \sum_{i} q_{i} \log \frac{q_{i}}{p_{i}}$$

- ▶ We can rank the nodes based on their contribution to this sum, $q_i \log \frac{q_i}{p_i}$
 - This is the Normalised PageRank score

Normalised PageRank score

Red node same seed

Yellow nodes are top 5
 Normalised PageRank
 scores

 Nodes with very high PageRank scores no longer dominate

Comments on Normalised PageRank

- Could go N-hops from seed node
 - Have to set pizza node degree limit
 - N-hop with pizza limit is standard contact chaining method
- Normalised PageRank deals with high degree nodes
 - High degree nodes tend to have high PageRank
 - Must score very highly on PPR to score well in Normalised PR
- Shown results within small component
- Evaluate Normalised PR for seed term in Giant Connected Component of Query Term Graph using Bagel

"GCHQ" seed query term

Rank	Query	NPR
1	Free People Check	0.791
2=	Jobs At Chanel	0.721
2=	Peter Wright (<i>Arabic</i>)	0.721
4	GCSE Bitesize Science	0.670
5	MI6	0.652
20	SKS	0.038
22	Foreign & Commonwealth Office	0.034
37	MI5	0.010
47=	MI6 James Bond	0.009
47=	MI^	0.009
47=	MI8	0.009
72	KGB	0.008
110	Wikileaks	0.003

Comments on Query Term Graph

- Query term graph is very noisy, as are all our Internet Events meta-data graphs
- Some promising results in finding similar queries but essential that results are interpreted by analysts
- Large amount of research to do
 - Clustering / Sessionising / ... [lots of commercially motivated work]
 - Query chains Banana -> Apple different intent to iPod -> Apple
 - Understanding the search behaviour of targets
- Normalised PageRank insights may be generally useful

Exploratory Data Analysis of Large-Scale Internet Events – gap in understanding

- Relevance to Cyber and SIGINT what is normal in the statistics of internet behaviour at large scale?
 - Can we measure or model the salient features of large-scale internet communications meta-data?
 - Can we identify behaviours associated with target activity (be that human, machine or collective BotNet activity) that are detectable?
- GORDIAN KNOT (Network Defence) vs SIGINT feeds
 - Understand the potential of GORDIAN KNOT for Cyber EDA
 - What's the gap between GORDIAN KNOT and SIGINT data?

Internet/Cyber EDA – FY 11/12

- Fingerprint web browsing sessions
 - Can we ID a user based on their browsing habits?
- Is the Internet Regional?
 - Hypothesis: "Internet is becoming more regionalised. Any machines communicating over long distances are of greater interest"
 - Does the data support this?
 - Can we characterise the activity and significance of long distance communications?
 - Applications to Cyber, but also potentially to other Intelligence questions

Internet/Cyber EDA – FY 11/12

- Attempt to identify malicious sites in the HTTP graph
 - "BadRank given set of known "bad" web sites, can we identify associated sites that either point in same direction, or are reached from initial sites
 - Identify loosely connected components bits that aren't closely tied in by association with Google et al.
 - Subgraph detection if we have an approximate idea of how a user reaches a malicious web site, can we identify this pattern and similar others in the HTTP graph? [SANDIA work]

Internet/Cyber EDA – FY 11/12

- FIVE ALIVE carry out EDA on the netflow dataset created by TR-FSP
 - FIVE ALIVE is a bulk store of IP flow records, coupled with some very simple analytics that summarize and visualize IP activity
 - The main challenge here is to deal with the size of the dataset; current work in TR-FSP has revolved around looking at subsets of the data but it would be interesting to work on the dataset as a whole

BLOOD HOUND – ICTR-NE

Refer disclosure requests to GCHQ on

- Detect electronic attack aim to detect distributed and automated behaviour
- Idea from IDA/CCS SCAMP 2009
 - 'Using degree distributions to detect internet traffic anomalies' Scheinerman
- Detect multiple IPs with same degree:
 - in-degree (distributed hacking/port scanning)
 - out-degree (DDOS/bot tasking)
- Graph: peak at in-degree $\sim 10^{1.8} = 63$
 - Appears to be some sort of hacking activity
 - Dictionary attack: cycling through range of IPs on network, making 63 GET requests to each
 - Trying 63 combinations of URI, with the intent of getting a MySQL setup script (basic exhaust)

Summary

- Pattern-based data mining unknown target discovery
 - Bulk unselected events population scale all events for country
 - Operational data mining hard target discovery real results
 - Target modus operandi behavioural based discovery
- Selector-based data mining unprecedented scale
 - Relationship scoring within multi-modal communications network
- Exploratory Data Analysis of Large-Scale Internet Events
 - Gap in understanding of events at Internet Scale
 - How can BIG DATA analytics contribute to Cyber target discovery?

